
bakery
Release 0.1

Olivier Hériveaux, Adrien Boussicault, Clément Iatrides, Sofien Bouaziz

Feb 02, 2020

CONTENTS:

1 Tutorial 1
1.1 Getting started . 1
1.2 What’s happening ? . 2
1.3 Dealing with errors . 2
1.4 Improving difficulty field . 3
1.5 Saving data . 4

2 Types 5
2.1 Standard types . 5
2.2 Arrays . 6
2.3 Structures . 6

2.3.1 Inheritance . 6
2.3.2 Multiple inheritance . 7
2.3.3 Templates . 7

2.4 Variants . 7
2.5 Default values . 8

2.5.1 Example with basic types . 8
2.5.2 Example with structures . 8

2.6 Optional values . 9
2.6.1 Example with basic types . 9
2.6.2 Example with structures . 9

3 Serialization 11
3.1 Basic serialization implementation . 11
3.2 Advanced serialization implementation . 12

4 C++ API 13

5 Indices and tables 19

Index 21

i

ii

CHAPTER

ONE

TUTORIAL

Bakery is a binary data asset loading library. It allows easy creation of data files using a C++-like syntax, provides
just-in-time binary compilation and C++ deserialization API.

Bakery has been designed for taking both perks of data description langages, such as XML or JSON, and binary files
loading speed. Loading a bakery data file only requires support for binary deserialization in the final program, which
is easy to implement and maintain - no need to parse the data files (bakery does it for you).

1.1 Getting started

In the following very quick example, we want a video game program to load settings from a configuration file: screen
resolution, fullscreen option, player name and game difficulty. We want the configuration file to be editable with any
simple text editor. Also, we don’t want to have complex code to parse and load this file in our program code.

Using the Bakery library, the first step is to write a recipe file which will specify what fields are to be expected in the
settings file:

Listing 1: settings.rec

int width;
int height;
bool fullscreen;
string name;
int difficulty;

The recipe will tell Bakery what fields must be set in the config data file. Each field has a defined type. The data file
can have the following content:

Listing 2: settings.dat

recipe "settings.rec";
name = "Gordon";
difficulty = 3;
width = 1024;
height = 768;
fullscreen = true;

Once this data file has been written, loading is very simple and straightforward:

Listing 3: demo.cpp

#include <bakery/bakery.hpp>
...

(continues on next page)

1

bakery, Release 0.1

(continued from previous page)

int width, height;
bool fullscreen;
std::string name;
int difficulty;

bakery::load("settings.dat", width, height, fullscreen, name, difficulty);

1.2 What’s happening ?

In the example above, the fields defined in the data file are not in the same order as specified in the recipe. It’s not a
bug, it’s a feature.

In the code loading the data file, the fields are deserialized in the same order as they are declared in the recipe, and this
is very important! When calling the load method, the bakery library builds a binary file settings.bin from the data
file and the recipe. The order of the fields written in the binary file is defined by the recipe. The generated binary will
look as defined below (for a x64 architecture):

Listing 4: hexdump -Cv settings.bin

00000000 00 04 00 00 00 03 00 00 01 06 00 00 00 00 00 00 |................|
00000010 00 47 6f 72 64 6f 6e 03 00 00 00 |.Gordon....|

The first 4 bytes 00 04 00 00 store the width field value (1024 in little endian). The next 4 bytes 00 03 00 00
store the height field value. The next byte 01 is the fullscreen option bool. Then comes the player name: it starts
with the value length 6 followed by 6 ASCII characters. Finally, the last 4 bytes 03 00 00 00 are for the difficulty
setting.

The builded binary is then open by the program and deserialized into the local variables using the >> operator. Bakery
defines deserialization operations for many types, such as std::string here.

If the settings.dat file is not modified, running the program a second time will not rebuild the binary file and will
directly deserialize it. This means loading the data will be really fast since no grammar parsing will happen this time.
For this small example the difference won’t be noticable, but when using large data files, such as a 3D animated model,
this caching mechanism is really efficient.

1.3 Dealing with errors

Loading data can fail if there is an error in the recipe or data files. When calling the load method, Bakery will return
a log_t object which stores the status of the compilation, and possible error messages. The following code is an
example showing how to check and report errors:

...
bakery::log_t log =

bakery::load("settings.dat", width, height, fullscreen, name, difficulty);
if (!log)
{

std::cout << "Error during settings loading: " << std::endl;
log.print();

}

Alternatively, use verbose option to print loading messages in std::cout, and abort_on_error option to
stop program execution when an error is encountered. Thoose option must be set using the bakery_t class:

2 Chapter 1. Tutorial

bakery, Release 0.1

...
bakery::bakery_t bak;
bak.set_verbose(true);
bak.set_abort_on_error(true);
// load will call std::abort in case of failure
bakery::load("settings.dat", width, height, fullscreen, name, difficulty);

1.4 Improving difficulty field

Currently, the difficulty field is defined as an integer, which is not very clear and allows the user setting any
arbitrary value. To make the settings file better, we can use enumerations to restrict the possible values: here are the
changes that can be made in the recipe file:

Listing 5: settings.rec

enum difficulty_t {
easy,
normal,
hard,
nightmare

};
...
difficulty_t difficulty;

The difficulty field can now be defined in the data file this way:

Listing 6: settings.dat

difficulty = easy;

The difficulty field will still be encoded as an int in the binary file, so our program should still work as it
expects an int during the deserialization. Bakery allows deserializing into C++ enumerations as well, but this is not
detailed in this tutorial. The easy difficulty is encoded as 0, normal as 1, hard as 2 and nightmare as 3. Bakery
also allows defining the enumeration values in the recipe file like C does, but if not specified default values are set
automatically.

When building the settings binary file, bakery will check that the defined value for the difficulty matches a
member of the difficulty_t type. However, for security issues, the value after deserialization MUST ALWAYS
be checked against bad input value since an attacker may be able to forge an invalid binary file and bypass compilation.
This rule of thumb is valid for any deserialized value!

Bakery has many defined types, supports structures, variants, typedefs, and templates types. . . This allows creating
very rich data formats!

1.4. Improving difficulty field 3

bakery, Release 0.1

1.5 Saving data

For now we saw how to load a settings data file using Bakery. To go further, we would like to save changes made in
the settings during program execution. This involes two operations: serialization and decompilation. The serialization
will save the settings in binary file settings.bin. Then, Bakery will decompile the binary using the settings.rec recipe
file and produce a new settings.dat file.

bakery::log_t log =
bakery::save("settings.dat", width, height, fullscreen, name, difficulty);

if (!log)
{

std::cout << "Error while saving settings: " << std::endl;
log.print();

}

4 Chapter 1. Tutorial

CHAPTER

TWO

TYPES

2.1 Standard types

The following table lists all the types natively supported by the Bakery library. It includes standard native types such
as int, float, bool, more complex types such as string, and also generic types like list<T>.

The first column shows the type names to be used in the recipe files. The second column shows the equivalent type
which can be used for deserialization in the C++ program. Note that one bakery type can have multiple equivalent
C++ types: for instance list can be deserialized into std::list<T> or std::vector<T>.

Bakery type C++ types
int int
short short
char char
bool bool
float float
double double
string std::string
pair<A, B> std::pair<A, B>
tuple<T0, T1, ...> std::tuple<T...>
list<T>

std::list<T>

std::vector<T>

map<K, V> std::map<K, V>

The binary data size and endianess of the primitive types are architecture dependent, just like C/C++ is. This means
you don’t have to worry about this when loading data with Bakery, but this also means a compiled binary may not
work as intended when copied on another architecture. The recommendation is to always copy the data and recipe
files, but not the generated binaries.

Architecture independant types may be added in future versions of Bakery.

5

bakery, Release 0.1

2.2 Arrays

Bakery supports fixed and dynamic arrays, as shown in the example recipe below:

/* Fixed array */
int[3] a;

/* Dynamic array */
int[] b;

/* Multi-dimensional array */
int[2][3] c;

Values are assigned as shown in the following data file below:

recipe "arrays.rec";
a = {1, 2, 3};
b = {1, 2, 3, 4, 5, 6};
c = {{1, 2}, {3, 4}, {5, 6}};

Dynamic arrays are equivalent to the list<T> type.

2.3 Structures

Structures can be defined in recipe files:

struct example_t {
int a;
float b;

};

example_t data;

. . . and set in data files:

recipe "example.rec";
data = {

a = 1;
b = 3.14159265;

};

2.3.1 Inheritance

Structure inheritance can be used to add more fields to an existing structure:

struct aircraft_t {
string name;
int wings;

};

struct jet_t: aircraft_t {
int reactors;

};

(continues on next page)

6 Chapter 2. Types

bakery, Release 0.1

(continued from previous page)

aircraft_t data;

recipe "planes.rec";
data = {

name = "A380";
wings = 2;
reactors = 4;

};

2.3.2 Multiple inheritance

A structure can inherits multiple parents. In that case, the order of declaration is very important because is defines the
order of deserialization. In the following structure declaration, the members of something_t will be written first in
the binary, the members of aircraft_t second, and the member reactors of jet_t third.

struct jet_t: something_t, aircraft_t {
int reactors;

};

2.3.3 Templates

Structures supports template type parametization, like C++ does (although the syntax for Bakery is simplified).

struct point_t<T> {
T x;
T y;

};

point_t<float> point_a;
point_t<int> point_b;

Setting the values for template types in the data file is transparent:

recipe "point.rec";
point_a = { x = 1.5; y = 3.6; };
point_b = { x = 0; y = 10; };

Multiple template parameters are also supported by adding more typenames separated with commas. Variadic template
parameters are not supported.

2.4 Variants

Bakery supports variant types, which can be deserialized to std::variant or boost::variant. The following
recipe shows a variant definition example:

variant numeric_t {
int a;
float b;
bool c;

(continues on next page)

2.4. Variants 7

bakery, Release 0.1

(continued from previous page)

};

numeric_t x;
numeric_t y;
numeric_t z;

Assignment in the data files is as follows:

recipe "variants.rec";
x = a: 5;
y = b: 3.0;
z = c: true;

2.5 Default values

Recipes allows defining default values for any variable. When a default value exists, variable assignment in the data
file can be omitted and the default value will be written in the compiled binary file.

Note: Although they can serve the same purpose, optional values are different from optional values described in next
page.

2.5.1 Example with basic types

Listing 1: settings.rec

int width = 1024;
int height = 768;
bool fullscreen = false;
string name = "Player 1";
int difficulty = 1;

2.5.2 Example with structures

8 Chapter 2. Types

bakery, Release 0.1

Listing 2: line.rec

struct point_t {
int x;
int y;

};

point_t a = {0, 0};
point_b b = {1, 1};

2.6 Optional values

A variable can de defined as optional in a recipe. When a variable is optional, assignment in the data file can be
omitted.

In the compiled binary, optional values are written using a boolean header indicating if the variable is defined or not.
If the variable is defined, it is written in the binary file, otherwise it is missing from the binary and it is up to the
serialization to assign a default value when reading the binary. Optional values are therefore more complex to handle
in the program, but the produced binaries can be much smaller than when using default values described in the previous
page.

A variable cannot be optional and have a default value defined.

2.6.1 Example with basic types

Listing 3: settings.rec

optional int width;
optional int height;
optional bool fullscreen;
optional string name;
optional int difficulty;

2.6.2 Example with structures

Listing 4: line.rec

struct point_t {
int x;
int y;

};

optional point_t a;
optional point_b b;

2.6. Optional values 9

bakery, Release 0.1

10 Chapter 2. Types

CHAPTER

THREE

SERIALIZATION

Bakery comes with deserialization/serialization methods in order to load/save data from/to binary streams. Standard
types and classes serialization is already defined by the Bakery library.

For types defined by the library users, serialization operation has to be defined by implementing the template special-
ization of bakery::serializer<T> struct.

3.1 Basic serialization implementation

This section shows how to implement serialization and deserialization for basic structures using a common code for
both operations.

Listing 1: demo.rec Recipe

struct demo_t {
int x;
int y;
string label;

};

#include <bakery/serializers.hpp>

struct demo_t {
int x;
int y;
std::string label;

};

template <> struct bakery::serializer<demo_t> {
template <typename U, typename IO> void operator()(U u, IO & io) {

io(u.x)(u.y)(u.label);
}

};

This code both implements serialization and deserialization operator, thanks to the template parameters U and IO. The
C++ code defines the demo_t structure identically as in the recipe file, but this is not mandatory as long as the binary
to data mapping is consistent (for example, the names of the members in the recipe could be different).

Alternatively, the serialization implementation can be written using some Bakery macros, which hides a little bit the
template magics:

11

bakery, Release 0.1

BAKERY_BASIC_SERIALIZATION_BEGIN(demo_t)
io(u.x)(u.y)(u.label)

BAKERY_BASIC_SERIALIZATION_END

3.2 Advanced serialization implementation

When serialization and deserialization code cannot be the same, the two operators can be defined separately. The
following snippet shows how std::string serialization operators are defined in Bakery:

template <> struct bakery::serializer<std::string> {
// Deserialization
template <typename U, typename IO>

void operator()(std::string & u, IO & io) {
size_t size = 0;
io(size);
u.resize(size)
for (size_t i = 0; i < size; ++i)

io(u[i]);
}

// Serialization
// u is const reference
template typename U, typename IO>

void operator()(const std::string & u, IO & io) {
io(u.size());
for (char c: u)

io(c);
}

};

12 Chapter 3. Serialization

CHAPTER

FOUR

C++ API

class bakery_t
Can load or save bakery data files.

Before loading data, options in the bakery can be configured. Directories to be included for recipe files can be
added.

After loading data using the bakery, extra compilation information can be retrieved in the state.

Public Functions

bakery_t()
Default constructor.

void include(const std::string &dir)
Includes a directory which may contain recipe files.

Parameters

• dir: The directory.

void include(const std::list<std::string> &dirs)
Add a list of include directories.

Parameters

• dirs: List of include directories.

const std::list<std::string> &get_include_directories() const

Return List of directories which may contain recipe files.

void set_force_rebuild(bool value)
Set or unset force_rebuild switch.

Parameters

• value: New value.

bool get_force_rebuild() const

Return force_rebuild setting.

13

bakery, Release 0.1

void set_verbose(bool value)
Enable or disable verbosity. When enabled, bakery directly prints to stdout information when loading data,
and error messages. Verbose option is disabled by default.

Parameters

• value: True to enable verbosity, false to disable.

bool get_verbose() const

Return true if verbosity is enabled, false otherwise.

void set_abort_on_error(bool value)
Enable or disable abort on error mode. When enabled, any error encountered during data loading will call
std::abort to terminate the program in the most possible brutal way. This option is for thoose who don’t
want to deal with errors themselves.

Parameters

• value: True to abort on error, false to continue execution.

bool get_abort_on_error() const

Return true if bakery aborts on errors, false otherwise.

input_t load_input(const std::string &path, log_t &log)
Load a bakery data file. Rebuilds the binary cache if necessary, or if the force_build option is enabled. If
options for loading data has to be set, use the bakery_t class instead.

Return input_t for deserialization.

Parameters

• path: Path to the datafile.

• log: Where error messages are written in case of problem.

template<typename ...T>
log_t load(const std::string &path, T&... dest)

Load a bakery data file and deserialize it in destination variables.

Return Log object containing potential error messages.

Parameters

• path: Path to the data file.

• dest: Reference to destination variable.

template<typename ...T>
log_t save(const std::string &dat_path, const std::string &rec_path, const T&... src)

Save a bakery data in binary using serialization, and then decompiles it to regenerate a text data file.

Return false in case of error (if abort_on_error is disabled), true if the binary and data files have been
written.

Parameters

• dat_path: Path to the data file.

14 Chapter 4. C++ API

bakery, Release 0.1

• rec_path: Path to the recipe file to be used for decompilation.

class input_t
Deserialization class. Non-copyable. Movable.

Public Functions

input_t()
Default constructor. Set stream to null. The input cannot be deserialized after default construction.

input_t(input_t &&other)
Move constructor.

Parameters

• other: Moved instance.

~input_t()
Destructor. Closes the stream.

input_t &operator=(input_t &&other)
Move assignment

Parameters

• other: Moved instance.

operator bool() const

Return True if Bakery successfully opened the file.

bool good() const

Return True if Bakery successfully opened the file.

void set_stream(std::istream *stream)
Sets the stream used for deserialization.

Parameters

• stream: Stream pointer. This class takes ownership of the pointer.

template<typename T>
input_t &operator>>(T &t)

Reads input into t using bakery deserialization.

Return this

Parameters

• t: Destination data.

template<typename T>
input_t &operator()(T &t)

Reads input into t using bakery deserialization.

Return this

15

bakery, Release 0.1

Parameters

• t: Destination data.

template<typename T>
void trivial(T &dest)

Trivially loads data by direct stream read.

class log_t
Log filled during the compilation or decompilation process.

Public Functions

log_t()
Constructor

size_t get_error_count() const

Return Count of error messages.

void print() const
Print to std::cout all the messages.

std::string to_string() const

Return A string representing the status. It contains all messages.

void add_message(const log_message_t &message)
Adds a message.

Parameters

• message: The message.

void add_message(log_message_type_t type, const std::string &text)
Adds a message.

Parameters

• type: type of message.

• text: Text of the message.

void error(const std::string &text)
Adds an error message.

Parameters

• text: Text of the message.

void warning(const std::string &text)
Adds a warning message.

Parameters

• text: Text of the message.

16 Chapter 4. C++ API

bakery, Release 0.1

const std::list<log_message_t> &get_messages() const

Return List of compilation messages.

void clear()
Deletes all the messages from the log.

size_t size() const

Return Number of messages in the log. To get the number of error messages, use get_error_count.

void set_rebuilt(bool value)
Set the rebuilt flag value. Called by bakery when loading a data file.

bool has_rebuilt() const

Return True if the binary has been rebuilt. False if it has been loaded from cache.

operator bool() const

Return True if log has no error messages.

bool good() const

Return True if log has no error messages.

class log_message_t
Holds a message resulting from a compilation (error message, warning message. . .).

Public Functions

log_message_t()
Default constructor.

log_message_t(log_message_type_t type_, const std::string &text_)
Constructor.

Parameters

• type_: Type of the message.

• text_: Text of the message.

std::string to_string() const

Return A string representing the message.

bool operator==(const log_message_t &other) const

Return true if this has the same text and message type as other.

bool operator!=(const log_message_t &other) const

Return true if this has a different text or message type as other.

17

bakery, Release 0.1

Public Members

log_message_type_t type
Type of the message.

std::string text
Message.

18 Chapter 4. C++ API

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

19

bakery, Release 0.1

20 Chapter 5. Indices and tables

INDEX

B
bakery::bakery_t (C++ class), 13
bakery::bakery_t::bakery_t (C++ function),

13
bakery::bakery_t::get_abort_on_error

(C++ function), 14
bakery::bakery_t::get_force_rebuild

(C++ function), 13
bakery::bakery_t::get_include_directories

(C++ function), 13
bakery::bakery_t::get_verbose (C++ func-

tion), 14
bakery::bakery_t::include (C++ function), 13
bakery::bakery_t::load (C++ function), 14
bakery::bakery_t::load_input (C++ func-

tion), 14
bakery::bakery_t::save (C++ function), 14
bakery::bakery_t::set_abort_on_error

(C++ function), 14
bakery::bakery_t::set_force_rebuild

(C++ function), 13
bakery::bakery_t::set_verbose (C++ func-

tion), 13
bakery::input_t (C++ class), 15
bakery::input_t::~input_t (C++ function), 15
bakery::input_t::good (C++ function), 15
bakery::input_t::input_t (C++ function), 15
bakery::input_t::operator bool (C++ func-

tion), 15
bakery::input_t::operator() (C++ function),

15
bakery::input_t::operator= (C++ function),

15
bakery::input_t::operator>> (C++ function),

15
bakery::input_t::set_stream (C++ function),

15
bakery::input_t::trivial (C++ function), 16
bakery::log_message_t (C++ class), 17
bakery::log_message_t::log_message_t

(C++ function), 17
bakery::log_message_t::operator!= (C++

function), 17
bakery::log_message_t::operator== (C++

function), 17
bakery::log_message_t::text (C++ member),

18
bakery::log_message_t::to_string (C++

function), 17
bakery::log_message_t::type (C++ member),

18
bakery::log_t (C++ class), 16
bakery::log_t::add_message (C++ function),

16
bakery::log_t::clear (C++ function), 17
bakery::log_t::error (C++ function), 16
bakery::log_t::get_error_count (C++ func-

tion), 16
bakery::log_t::get_messages (C++ function),

16
bakery::log_t::good (C++ function), 17
bakery::log_t::has_rebuilt (C++ function),

17
bakery::log_t::log_t (C++ function), 16
bakery::log_t::operator bool (C++ func-

tion), 17
bakery::log_t::print (C++ function), 16
bakery::log_t::set_rebuilt (C++ function),

17
bakery::log_t::size (C++ function), 17
bakery::log_t::to_string (C++ function), 16
bakery::log_t::warning (C++ function), 16

21

	Tutorial
	Getting started
	What’s happening ?
	Dealing with errors
	Improving difficulty field
	Saving data

	Types
	Standard types
	Arrays
	Structures
	Inheritance
	Multiple inheritance
	Templates

	Variants
	Default values
	Example with basic types
	Example with structures

	Optional values
	Example with basic types
	Example with structures

	Serialization
	Basic serialization implementation
	Advanced serialization implementation

	C++ API
	Indices and tables
	Index

