

    
      
          
            
  
Welcome to bakery’s documentation!


Contents:


	Tutorial
	Getting started

	What’s happening ?

	Dealing with errors

	Improving difficulty field

	Saving data





	Types
	Standard types

	Arrays

	Structures
	Inheritance

	Multiple inheritance

	Templates





	Variants

	Default values
	Example with basic types

	Example with structures





	Optional values
	Example with basic types

	Example with structures









	Serialization
	Basic serialization implementation

	Advanced serialization implementation





	API








Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Tutorial

Bakery is a binary data asset loading library. It allows easy creation of data
files using a C++-like syntax, provides just-in-time binary compilation and
C++ deserialization API.

Bakery has been designed for taking both perks of data description langages, such
as XML or JSON, and binary files loading speed. Loading a bakery data file only
requires support for binary deserialization in the final program, which is easy
to implement and maintain - no need to parse the data files (bakery does it for
you).


Getting started

In the following very quick example, we want a video game program to load
settings from a configuration file: screen resolution, fullscreen option,
player name and game difficulty. We want the configuration file to be editable
with any simple text editor. Also, we don’t want to have complex code to parse
and load this file in our program code.

Using the Bakery library, the first step is to write a recipe file which
will specify what fields are to be expected in the settings file:


settings.rec

int width;
int height;
bool fullscreen;
string name;
int difficulty;







The recipe will tell Bakery what fields must be set in the config data
file. Each field has a defined type. The data file can have the following
content:


settings.dat

recipe "settings.rec";
name = "Gordon";
difficulty = 3;
width = 1024;
height = 768;
fullscreen = true;







Once this data file has been written, loading is very simple and
straightforward:


demo.cpp

#include <bakery/bakery.hpp>
...
int width, height;
bool fullscreen;
std::string name;
int difficulty;

bakery::load("settings.dat", width, height, fullscreen, name, difficulty);










What’s happening ?

In the example above, the fields defined in the data file are not in the
same order as specified in the recipe. It’s not a bug, it’s a feature.

In the code loading the data file, the fields are deserialized in the same
order as they are declared in the recipe, and this is very important! When
calling the load method, the bakery library builds a binary file
settings.bin from the data file and the recipe. The order of the
fields written in the binary file is defined by the recipe. The generated
binary will look as defined below (for a x64 architecture):


hexdump -Cv settings.bin

00000000  00 04 00 00 00 03 00 00  01 06 00 00 00 00 00 00  |................|
00000010  00 47 6f 72 64 6f 6e 03  00 00 00                 |.Gordon....|







The first 4 bytes 00 04 00 00 store the width field value (1024 in little
endian). The next 4 bytes 00 03 00 00 store the height field value. The next
byte 01 is the fullscreen option bool. Then comes the player name: it
starts with the value length 6 followed by 6 ASCII characters. Finally, the last
4 bytes 03 00 00 00 are for the difficulty setting.

The builded binary is then open by the program and deserialized into the local
variables using the >> operator. Bakery defines deserialization operations
for many types, such as std::string here.

If the settings.dat file is not modified, running the program a second time
will not rebuild the binary file and will directly deserialize it. This means
loading the data will be really fast since no grammar parsing will happen this
time. For this small example the difference won’t be noticable, but when using
large data files, such as a 3D animated model, this caching mechanism is really
efficient.




Dealing with errors

Loading data can fail if there is an error in the recipe or data files.
When calling the load method, Bakery will return a log_t object which
stores the status of the compilation, and possible error messages. The following
code is an example showing how to check and report errors:

...
bakery::log_t log =
    bakery::load("settings.dat", width, height, fullscreen, name, difficulty);
if (!log)
{
    std::cout << "Error during settings loading: " << std::endl;
    log.print();
}





Alternatively, use verbose option to print loading messages in
std::cout, and abort_on_error option to stop program execution when an
error is encountered. Thoose option must be set using the bakery_t class:

...
bakery::bakery_t bak;
bak.set_verbose(true);
bak.set_abort_on_error(true);
// load will call std::abort in case of failure
bakery::load("settings.dat", width, height, fullscreen, name, difficulty);








Improving difficulty field

Currently, the difficulty field is defined as an integer, which is not very
clear and allows the user setting any arbitrary value. To make the settings
file better, we can use enumerations to restrict the possible values: here
are the changes that can be made in the recipe file:


settings.rec

enum difficulty_t {
    easy,
    normal,
    hard,
    nightmare
};
...
difficulty_t difficulty;







The difficulty field can now be defined in the data file this way:


settings.dat

difficulty = easy;







The difficulty field will still be encoded as an int in the binary file,
so our program should still work as it expects an int during the
deserialization. Bakery allows deserializing into C++ enumerations as well, but
this is not detailed in this tutorial. The easy difficulty is encoded as 0,
normal as 1, hard as 2 and nightmare as 3. Bakery also allows
defining the enumeration values in the recipe file like C does, but if not
specified default values are set automatically.

When building the settings binary file, bakery will check that the defined value
for the difficulty matches a member of the difficulty_t type. However,
for security issues, the value after deserialization MUST ALWAYS be checked
against bad input value since an attacker may be able to forge an invalid binary
file and bypass compilation. This rule of thumb is valid for any deserialized
value!

Bakery has many defined types, supports structures, variants, typedefs, and
templates types… This allows creating very rich data formats!




Saving data

For now we saw how to load a settings data file using Bakery. To go further, we
would like to save changes made in the settings during program execution. This
involes two operations: serialization and decompilation. The serialization will
save the settings in binary file settings.bin. Then, Bakery will decompile the
binary using the settings.rec recipe file and produce a new settings.dat
file.

bakery::log_t log =
    bakery::save("settings.dat", width, height, fullscreen, name, difficulty);
if (!log)
{
    std::cout << "Error while saving settings: " << std::endl;
    log.print();
}











          

      

      

    

  

    
      
          
            
  
Types



	Standard types

	Arrays

	Structures
	Inheritance

	Multiple inheritance

	Templates





	Variants

	Default values
	Example with basic types

	Example with structures





	Optional values
	Example with basic types

	Example with structures













          

      

      

    

  

    
      
          
            
  
Standard types

The following table lists all the types natively supported by the Bakery
library. It includes standard native types such as int, float,
bool, more complex types such as string, and also generic types
like list<T>.

The first column shows the type names to be used in the recipe files.
The second column shows the equivalent type which can be used for
deserialization in the C++ program. Note that one bakery type can have
multiple equivalent C++ types: for instance list can be deserialized
into std::list<T> or std::vector<T>.







	Bakery type

	C++ types





	int

	int



	short

	short



	char

	char



	bool

	bool



	float

	float



	double

	double



	string

	std::string



	pair<A, B>

	std::pair<A, B>



	tuple<T0, T1, ...>

	std::tuple<T...>



	list<T>

	
std::list<T>

std::vector<T>






	map<K, V>

	std::map<K, V>






The binary data size and endianess of the primitive types are architecture
dependent, just like C/C++ is. This means you don’t have to worry about this
when loading data with Bakery, but this also means a compiled binary may not
work as intended when copied on another architecture. The recommendation is to
always copy the data and recipe files, but not the generated binaries.

Architecture independant types may be added in future versions of Bakery.





          

      

      

    

  

    
      
          
            
  
Arrays

Bakery supports fixed and dynamic arrays, as shown in the example recipe below:

/* Fixed array */
int[3] a;

/* Dynamic array */
int[] b;

/* Multi-dimensional array */
int[2][3] c;





Values are assigned as shown in the following data file below:

recipe "arrays.rec";
a = {1, 2, 3};
b = {1, 2, 3, 4, 5, 6};
c = {{1, 2}, {3, 4}, {5, 6}};





Dynamic arrays are equivalent to the list<T> type.





          

      

      

    

  

    
      
          
            
  
Structures

Structures can be defined in recipe files:

struct example_t {
    int a;
    float b;
};

example_t data;





… and set in data files:

recipe "example.rec";
data = {
    a = 1;
    b = 3.14159265;
};






Inheritance

Structure inheritance can be used to add more fields to an existing structure:

struct aircraft_t {
    string name;
    int wings;
};

struct jet_t: aircraft_t {
    int reactors;
};

aircraft_t data;





recipe "planes.rec";
data = {
    name = "A380";
    wings = 2;
    reactors = 4;
};








Multiple inheritance

A structure can inherits multiple parents. In that case, the order of
declaration is very important because is defines the order of deserialization.
In the following structure declaration, the members of something_t will be
written first in the binary, the members of aircraft_t second, and the
member reactors of jet_t third.

struct jet_t: something_t, aircraft_t {
    int reactors;
};








Templates

Structures supports template type parametization, like C++ does (although the
syntax for Bakery is simplified).

struct point_t<T> {
    T x;
    T y;
};

point_t<float> point_a;
point_t<int> point_b;





Setting the values for template types in the data file is transparent:

recipe "point.rec";
point_a = { x = 1.5; y = 3.6; };
point_b = { x = 0; y = 10; };





Multiple template parameters are also supported by adding more typenames
separated with commas. Variadic template parameters are not supported.







          

      

      

    

  

    
      
          
            
  
Variants

Bakery supports variant types, which can be deserialized to std::variant or
boost::variant. The following recipe shows a variant definition example:

variant numeric_t {
    int a;
    float b;
    bool c;
};

numeric_t x;
numeric_t y;
numeric_t z;





Assignment in the data files is as follows:

recipe "variants.rec";
x = a: 5;
y = b: 3.0;
z = c: true;









          

      

      

    

  

    
      
          
            
  
Default values

Recipes allows defining default values for any variable. When a default value
exists, variable assignment in the data file can be omitted and the default
value will be written in the compiled binary file.

Note: Although they can serve the same purpose, optional values are different
from optional values described in next page.


Example with basic types


settings.rec

int width = 1024;
int height = 768;
bool fullscreen = false;
string name = "Player 1";
int difficulty = 1;










Example with structures


line.rec

struct point_t {
    int x;
    int y;
};

point_t a = {0, 0};
point_b b = {1, 1};













          

      

      

    

  

    
      
          
            
  
Optional values

A variable can de defined as optional in a recipe. When a variable is optional,
assignment in the data file can be omitted.

In the compiled binary, optional values are written using a boolean header
indicating if the variable is defined or not. If the variable is defined, it is
written in the binary file, otherwise it is missing from the binary and it is up
to the serialization to assign a default value when reading the binary. Optional
values are therefore more complex to handle in the program, but the produced
binaries can be much smaller than when using default values described in the
previous page.

A variable cannot be optional and have a default value defined.


Example with basic types


settings.rec

optional int width;
optional int height;
optional bool fullscreen;
optional string name;
optional int difficulty;










Example with structures


line.rec

struct point_t {
    int x;
    int y;
};

optional point_t a;
optional point_b b;













          

      

      

    

  

    
      
          
            
  
Serialization

Bakery comes with deserialization/serialization methods in order to load/save
data from/to binary streams. Standard types and classes serialization is already
defined by the Bakery library.

For types defined by the library users, serialization operation has to be
defined by implementing the template specialization of bakery::serializer<T>
struct.


Basic serialization implementation

This section shows how to implement serialization and deserialization for basic
structures using a common code for both operations.


demo.rec Recipe

struct demo_t {
    int x;
    int y;
    string label;
};







#include <bakery/serializers.hpp>

struct demo_t {
    int x;
    int y;
    std::string label;
};

template <> struct bakery::serializer<demo_t> {
    template <typename U, typename IO> void operator()(U u, IO & io) {
        io(u.x)(u.y)(u.label);
    }
};





This code both implements serialization and deserialization operator, thanks to
the template parameters U and IO. The C++ code defines the demo_t
structure identically as in the recipe file, but this is not mandatory as
long as the binary to data mapping is consistent (for example, the names of the
members in the recipe could be different).

Alternatively, the serialization implementation can be written using some Bakery
macros, which hides a little bit the template magics:

BAKERY_BASIC_SERIALIZATION_BEGIN(demo_t)
    io(u.x)(u.y)(u.label)
BAKERY_BASIC_SERIALIZATION_END








Advanced serialization implementation

When serialization and deserialization code cannot be the same, the two
operators can be defined separately. The following snippet shows how
std::string serialization operators are defined in Bakery:

template <> struct bakery::serializer<std::string> {
    // Deserialization
    template <typename U, typename IO>
        void operator()(std::string & u, IO & io) {
        size_t size = 0;
        io(size);
        u.resize(size)
        for (size_t i = 0; i < size; ++i)
            io(u[i]);
    }

    // Serialization
    // u is const reference
    template typename U, typename IO>
        void operator()(const std::string & u, IO & io) {
        io(u.size());
        for (char c: u)
            io(c);
    }
};











          

      

      

    

  

    
      
          
            
  
C++ API


	
class bakery_t


	Can load or save bakery data files.

Before loading data, options in the bakery can be configured. Directories to be included for recipe files can be added.

After loading data using the bakery, extra compilation information can be retrieved in the state. 


Public Functions


	
bakery_t()


	Default constructor. 






	
void include(const std::string &dir)


	Includes a directory which may contain recipe files.


	Parameters
	
	dir: The directory. 















	
void include(const std::list<std::string> &dirs)


	Add a list of include directories.


	Parameters
	
	dirs: List of include directories. 















	
const std::list<std::string> &get_include_directories() const


	
	Return
	List of directories which may contain recipe files. 












	
void set_force_rebuild(bool value)


	Set or unset force_rebuild switch.


	Parameters
	
	value: New value. 















	
bool get_force_rebuild() const


	
	Return
	force_rebuild setting. 












	
void set_verbose(bool value)


	Enable or disable verbosity. When enabled, bakery directly prints to stdout information when loading data, and error messages. Verbose option is disabled by default.


	Parameters
	
	value: True to enable verbosity, false to disable. 















	
bool get_verbose() const


	
	Return
	true if verbosity is enabled, false otherwise. 












	
void set_abort_on_error(bool value)


	Enable or disable abort on error mode. When enabled, any error encountered during data loading will call std::abort to terminate the program in the most possible brutal way. This option is for thoose who don’t want to deal with errors themselves.


	Parameters
	
	value: True to abort on error, false to continue execution. 















	
bool get_abort_on_error() const


	
	Return
	true if bakery aborts on errors, false otherwise. 












	
input_t load_input(const std::string &path, log_t &log)


	Load a bakery data file. Rebuilds the binary cache if necessary, or if the force_build option is enabled. If options for loading data has to be set, use the bakery_t class instead.


	Return
	input_t for deserialization. 



	Parameters
	
	path: Path to the datafile. 


	log: Where error messages are written in case of problem. 















	
template<typename ...T>
log_t load(const std::string &path, T&... dest)


	Load a bakery data file and deserialize it in destination variables.


	Return
	Log object containing potential error messages. 



	Parameters
	
	path: Path to the data file. 


	dest: Reference to destination variable. 















	
template<typename ...T>
log_t save(const std::string &dat_path, const std::string &rec_path, const T&... src)


	Save a bakery data in binary using serialization, and then decompiles it to regenerate a text data file.


	Return
	false in case of error (if abort_on_error is disabled), true if the binary and data files have been written. 



	Parameters
	
	dat_path: Path to the data file. 


	rec_path: Path to the recipe file to be used for decompilation. 





















	
class input_t


	Deserialization class. Non-copyable. Movable. 


Public Functions


	
input_t()


	Default constructor. Set stream to null. The input cannot be deserialized after default construction. 






	
input_t(input_t &&other)


	Move constructor.


	Parameters
	
	other: Moved instance. 















	
~input_t()


	Destructor. Closes the stream. 






	
input_t &operator=(input_t &&other)


	Move assignment


	Parameters
	
	other: Moved instance. 















	
operator bool() const


	
	Return
	True if Bakery successfully opened the file. 












	
bool good() const


	
	Return
	True if Bakery successfully opened the file. 












	
void set_stream(std::istream *stream)


	Sets the stream used for deserialization.


	Parameters
	
	stream: Stream pointer. This class takes ownership of the pointer. 















	
template<typename T>
input_t &operator>>(T &t)


	Reads input into t using bakery deserialization.


	Return
	this 



	Parameters
	
	t: Destination data. 















	
template<typename T>
input_t &operator()(T &t)


	Reads input into t using bakery deserialization.


	Return
	this 



	Parameters
	
	t: Destination data. 















	
template<typename T>
void trivial(T &dest)


	Trivially loads data by direct stream read. 












	
class log_t


	Log filled during the compilation or decompilation process. 


Public Functions


	
log_t()


	Constructor 






	
size_t get_error_count() const


	
	Return
	Count of error messages. 












	
void print() const


	Print to std::cout all the messages. 






	
std::string to_string() const


	
	Return
	A string representing the status. It contains all messages. 












	
void add_message(const log_message_t &message)


	Adds a message.


	Parameters
	
	message: The message. 















	
void add_message(log_message_type_t type, const std::string &text)


	Adds a message.


	Parameters
	
	type: type of message. 


	text: Text of the message. 















	
void error(const std::string &text)


	Adds an error message.


	Parameters
	
	text: Text of the message. 















	
void warning(const std::string &text)


	Adds a warning message.


	Parameters
	
	text: Text of the message. 















	
const std::list<log_message_t> &get_messages() const


	
	Return
	List of compilation messages. 












	
void clear()


	Deletes all the messages from the log. 






	
size_t size() const


	
	Return
	Number of messages in the log. To get the number of error messages, use get_error_count. 












	
void set_rebuilt(bool value)


	Set the rebuilt flag value. Called by bakery when loading a data file. 






	
bool has_rebuilt() const


	
	Return
	True if the binary has been rebuilt. False if it has been loaded from cache. 












	
operator bool() const


	
	Return
	True if log has no error messages. 












	
bool good() const


	
	Return
	True if log has no error messages. 


















	
class log_message_t


	Holds a message resulting from a compilation (error message, warning message…). 


Public Functions


	
log_message_t()


	Default constructor. 






	
log_message_t(log_message_type_t type_, const std::string &text_)


	Constructor.


	Parameters
	
	type_: Type of the message. 


	text_: Text of the message. 















	
std::string to_string() const


	
	Return
	A string representing the message. 












	
bool operator==(const log_message_t &other) const


	
	Return
	true if this has the same text and message type as other. 












	
bool operator!=(const log_message_t &other) const


	
	Return
	true if this has a different text or message type as other. 














Public Members


	
log_message_type_t type


	Type of the message. 






	
std::string text


	Message. 















          

      

      

    

  

    
      
          
            

Index



 B
 


B


  	
      	bakery::bakery_t (C++ class)


      	bakery::bakery_t::bakery_t (C++ function)


      	bakery::bakery_t::get_abort_on_error (C++ function)


      	bakery::bakery_t::get_force_rebuild (C++ function)


      	bakery::bakery_t::get_include_directories (C++ function)


      	bakery::bakery_t::get_verbose (C++ function)


      	bakery::bakery_t::include (C++ function), [1]


      	bakery::bakery_t::load (C++ function)


      	bakery::bakery_t::load_input (C++ function)


      	bakery::bakery_t::save (C++ function)


      	bakery::bakery_t::set_abort_on_error (C++ function)


      	bakery::bakery_t::set_force_rebuild (C++ function)


      	bakery::bakery_t::set_verbose (C++ function)


      	bakery::input_t (C++ class)


      	bakery::input_t::good (C++ function)


      	bakery::input_t::input_t (C++ function), [1]


      	bakery::input_t::operator bool (C++ function)


      	bakery::input_t::operator() (C++ function)


      	bakery::input_t::operator= (C++ function)


      	bakery::input_t::operator>> (C++ function)


      	bakery::input_t::set_stream (C++ function)


      	bakery::input_t::trivial (C++ function)


  

  	
      	bakery::input_t::~input_t (C++ function)


      	bakery::log_message_t (C++ class)


      	bakery::log_message_t::log_message_t (C++ function), [1]


      	bakery::log_message_t::operator!= (C++ function)


      	bakery::log_message_t::operator== (C++ function)


      	bakery::log_message_t::text (C++ member)


      	bakery::log_message_t::to_string (C++ function)


      	bakery::log_message_t::type (C++ member)


      	bakery::log_t (C++ class)


      	bakery::log_t::add_message (C++ function), [1]


      	bakery::log_t::clear (C++ function)


      	bakery::log_t::error (C++ function)


      	bakery::log_t::get_error_count (C++ function)


      	bakery::log_t::get_messages (C++ function)


      	bakery::log_t::good (C++ function)


      	bakery::log_t::has_rebuilt (C++ function)


      	bakery::log_t::log_t (C++ function)


      	bakery::log_t::operator bool (C++ function)


      	bakery::log_t::print (C++ function)


      	bakery::log_t::set_rebuilt (C++ function)


      	bakery::log_t::size (C++ function)


      	bakery::log_t::to_string (C++ function)


      	bakery::log_t::warning (C++ function)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to bakery’s documentation!
        


        		
          Tutorial
          
            		
              Getting started
            


            		
              What’s happening ?
            


            		
              Dealing with errors
            


            		
              Improving difficulty field
            


            		
              Saving data
            


          


        


        		
          Types
          
            		
              Standard types
            


            		
              Arrays
            


            		
              Structures
              
                		
                  Inheritance
                


                		
                  Multiple inheritance
                


                		
                  Templates
                


              


            


            		
              Variants
            


            		
              Default values
              
                		
                  Example with basic types
                


                		
                  Example with structures
                


              


            


            		
              Optional values
              
                		
                  Example with basic types
                


                		
                  Example with structures
                


              


            


          


        


        		
          Serialization
          
            		
              Basic serialization implementation
            


            		
              Advanced serialization implementation
            


          


        


        		
          API
        


      


    
  

_static/logo.png





_static/minus.png





_static/file.png





_static/plus.png





